SPECIAL FEATURE: DATA ASSIMILATION Experimental warming altered rates of carbon processes, allocation, and carbon storage in a tallgrass prairie
نویسندگان
چکیده
Climate warming affects ecosystem functioning by altering the rates of carbon (C) fixation and release. Modeling warming effect on terrestrial C cycling is critical given the feedbacks between climate and C cycling. However, the effect of warming on key model parameters and the resulting long-term C dynamics has not been carefully examined. In this study, measurements from a nine-year warming experimental site in a tallgrass prairie were assimilated into a terrestrial ecosystem C cycle model to assess warming effect on key model parameters and to quantify uncertainties of long-term C projection. Warming decreased allocation of gross primary production (GPP) to shoot, and turnover rate of the live C pools (i.e., shoot and root C), but increased the turnover rates of litter and fast soil C pools. Consequently, warming increased live C pools, but decreased litter and soil C pools, and overall decreased total ecosystem C in a 90-year model projection. Information content gained from assimilated datasets was much greater for plant, litter and fast soil C pools than for slow and passive soil C pools. Sensitivity analysis revealed that fast turnover C pools were most sensitive to their turnover rates and modest to C-input related parameters on both short-term and long-term time scales. However, slow turnover C pools were sensitive to turnover rate and C input in long-term prediction, not in short-term prediction. As a result, total soil and ecosystem C pools were generally insensitive to any parameter in short term, but determined by turnover rates of the fast, slow and passive soil C and transfer coefficients from upstream C to slow and passive C pools. Our findings suggest that data assimilation is an effective tool to explore the effect of warming on C dynamics; the nine-year field data contribute more information for the fast C processes than for the slow C processes; and C cycle model parameters change with warming, and models need to account for that phenomenon not to produce bias in C projections. However, warming-induced changes in parameter values also suggest that some important ecosystem processes may be missing or not adequately represented in the ecosystem C models.
منابع مشابه
Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie
[1] This study was conducted to examine direct and indirect impacts of global warming on carbon processes in a tallgrass prairie in the U.S. Great Plains. Infrared radiators were used to simulate global warming, and clipping was used to mimic hay mowing. Experimental warming caused significant increases in green biomass in spring and autumn and total biomass in summer on most of the measuring d...
متن کاملRelative effects of precipitation variability and warming on tallgrass prairie ecosystem function
Precipitation and temperature drive many aspects of terrestrial ecosystem function. Climate change scenarios predict increasing precipitation variability and temperature, and long term experiments are required to evaluate the ecosystem consequences of interannual climate variation, increased growing season (intra-annual) rainfall variability, and warming. We present results from an experiment a...
متن کاملInterannual variability in responses of belowground net primary productivity (NPP) and NPP partitioning to longterm warming and clipping in a tallgrass prairie
The dynamics of belowground net primary productivity (BNPP) is of fundamental importance in understanding carbon (C) allocation and storage in grasslands. However, our knowledge of the interannual variability in response of BNPP to ongoing global warming is limited. In this study, we explored temporal responses of BNPP and net primary productivity (NPP) partitioning to warming and clipping in a...
متن کاملEcohydrological responses to multifactor global change in a tallgrass prairie: A modeling analysis
[1] Relative impacts of multiple global change factors on ecohydrological processes in terrestrial ecosystems have not been carefully studied. In this study, we used a terrestrial ecosystem (TECO) model to examine effects of three global change factors (i.e., climate warming, elevated CO2, and altered precipitation) individually and in combination on runoff, evaporation, transpiration, rooting ...
متن کاملWarming Alters Expressions of Microbial Functional Genes Important to Ecosystem Functioning
Soil microbial communities play critical roles in ecosystem functioning and are likely altered by climate warming. However, so far, little is known about effects of warming on microbial functional gene expressions. Here, we applied functional gene array (GeoChip 3.0) to analyze cDNA reversely transcribed from total RNA to assess expressed functional genes in active soil microbial communities af...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015